Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Sci Adv ; 10(7): eadi8847, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363840

RESUMO

Various control strategies are available for building fluorogenic probes to visualize biological events in terms of a fluorescence change. Here, we performed the time-dependent density functional theory (TD-DFT) computational analysis of the twisted intramolecular charge transfer (TICT) process in rhodamine dyes. On the basis of the results, we designed and synthesized a series of rhodamine dyes and established a fluorescence quenching strategy that we call steric repulsion-induced TICT (sr-TICT), in which the fluorescence quenching process is greatly accelerated by simple intramolecular twisting. As proof of concept of this design strategy, we used it to develop a fluorogenic probe, 2-Me PeER (pentyloxyethylrhodamine), for the N-dealkylation activity of CYP3A4. We applied 2-Me PeER for CYP3A4 activity-based fluorescence-activated cell sorting (FACS), providing access to homogeneous, highly functional human-induced pluripotent stem cell (hiPSC)-derived hepatocytes and intestinal epithelial cells. Our results suggest that sr-TICT represents a general fluorescence control method for fluorogenic probes.


Assuntos
Corantes , Citocromo P-450 CYP3A , Humanos , Fluorescência , Mercaptoetanol , Rodaminas
2.
Stem Cell Res Ther ; 15(1): 57, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424603

RESUMO

BACKGROUND: Human induced pluripotent stem (iPS) cell-derived enterocyte-like cells (ELCs) are expected to be useful for evaluating the intestinal absorption and metabolism of orally administered drugs. However, it is difficult to generate large amounts of ELCs with high quality because they cannot proliferate and be passaged. METHODS: To solve the issue above, we have established intestinal organoids from ELCs generated using our protocol. Furthermore, monolayers were produced from the organoids. We evaluated the usefulness of the monolayers by comparing their functions with those of the original ELCs and the organoids. RESULTS: We established organoids from ELCs (ELC-org) that could be passaged and maintained for more than a year. When ELC-org were dissociated into single cells and seeded on cell culture inserts (ELC-org-mono), they formed a tight monolayer in 3 days. Both ELC-org and ELC-org-mono were composed exclusively of epithelial cells. Gene expressions of many drug-metabolizing enzymes and drug transporters in ELC-org-mono were enhanced, as compared with those in ELC-org, to a level comparable to those in adult human small intestine. The CYP3A4 activity level in ELC-org-mono was comparable or higher than that in primary cryopreserved human small intestinal cells. ELC-org-mono had the efflux activities of P-gp and BCRP. Importantly, ELC-org-mono maintained high intestinal functions without any negative effects even after long-term culture (for more than a year) or cryopreservation. RNA-seq analysis showed that ELC-org-mono were more mature as intestinal epithelial cells than ELCs or ELC-org. CONCLUSIONS: We have successfully improved the function and convenience of ELCs by utilizing organoid technology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Diferenciação Celular , Proteínas de Neoplasias/metabolismo , Organoides/metabolismo , Mucosa Intestinal/metabolismo
3.
FASEB J ; 38(2): e23425, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38226852

RESUMO

Postprandial hyperglycemia is an early indicator of impaired glucose tolerance that leads to type 2 diabetes mellitus (T2DM). Alterations in the fatty acid composition of phospholipids have been implicated in diseases such as T2DM and nonalcoholic fatty liver disease. Lysophospholipid acyltransferase 10 (LPLAT10, also called LPCAT4 and LPEAT2) plays a role in remodeling fatty acyl chains of phospholipids; however, its relationship with metabolic diseases has not been fully elucidated. LPLAT10 expression is low in the liver, the main organ that regulates metabolism, under normal conditions. Here, we investigated whether overexpression of LPLAT10 in the liver leads to improved glucose metabolism. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector (Ad-LPLAT10) using an improved Ad vector. Postprandial hyperglycemia was suppressed by the induction of glucose-stimulated insulin secretion in Ad-LPLAT10-treated mice compared with that in control Ad vector-treated mice. Hepatic and serum levels of phosphatidylcholine 40:7, containing C18:1 and C22:6, were increased in Ad-LPLAT10-treated mice. Serum from Ad-LPLAT10-treated mice showed increased glucose-stimulated insulin secretion in mouse insulinoma MIN6 cells. These results indicate that changes in hepatic phosphatidylcholine species due to liver-specific LPLAT10 overexpression affect the pancreas and increase glucose-stimulated insulin secretion. Our findings highlight LPLAT10 as a potential novel therapeutic target for T2DM.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Animais , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Glucose/farmacologia , Secreção de Insulina , Fígado , Fosfatidilcolinas , Fosfolipídeos
4.
Drug Metab Pharmacokinet ; 54: 100532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064926

RESUMO

Human intestinal organoids (HIOs) have been reported to exert their functions in a way that mimics living organs, and HIOs-derived monolayers are expected to be applied to in vitro intestinal pharmacokinetic studies. However, HIOs are established from human tissue, which raises issues of availability and ethics. In the present study, to solve these problems, we have established intestinal organoids using commercially available cryopreserved human intestinal epithelial cells (C-IOs), and compared their functions with biopsy-derived human intestinal organoids (B-IOs) from a pharmacokinetic point of view. Both C-IOs and B-IOs reproduced the morphological features of the intestinal tract and were shown to be composed of epithelial cells. Monolayers generated from C-IOs and B-IOs (C-IO-2D, B-IO-2D, respectively) structurally mimic the small intestine. The C-IOs showed gene expression levels comparable to those of the B-IOs, which were close to those of adult human small intestine. Importantly, the C-IOs-2D showed levels of pharmacokinetics-related protein expression and activity-including cytochrome P450 3A4 (CYP3A4) and carboxylesterase 2 (CES2) enzymatic activities and P-glycoprotein (P-gp) transporter activities -similar to those of B-IOs-2D. This study addresses the difficulties associated with B-IOs and provides fundamental characteristics for the application of C-IOs in pharmacokinetic studies.


Assuntos
Mucosa Intestinal , Intestinos , Adulto , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Células Epiteliais/metabolismo , Organoides/metabolismo
5.
PLoS One ; 18(10): e0286323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37856461

RESUMO

Circulating tumor cells (CTCs) are present in the blood of cancer patients from the early stage of cancer development, and their presence has been correlated with patient prognosis and treatment responses. Accordingly, CTCs have been attracting attention as a novel biomarker for early detection of cancer and monitoring of treatment responses. However, since patients typically have only a few CTCs per milliliter of blood, development of an accurate and highly sensitive CTC detection method is crucial. We previously developed a CTC detection method using a novel conditionally replicating adenovirus (Ad) that expresses green fluorescence protein (GFP) in a tumor cell-specific manner by expressing the E1 gene using a tumor-specific human telomerase reverse transcriptase (hTERT) promoter (rAdF35-142T-GFP). CTCs were efficiently detected using rAdF35-142T-GFP, but GFP expression levels in the CTCs and production efficiencies of rAdF35-142T-GFP were relatively low. In this study, in order to overcome these problems, we developed four types of novel GFP-expressing conditionally replicating Ads and examined their ability to visualize CTCs in the blood samples of lung cancer patients. Among the four types of novel recombinant Ads, the novel conditionally replicating Ad containing the 2A peptide and the GFP gene downstream of the E1A gene and the adenovirus death protein (ADP) gene in the E3 region (rAdF35-E1-2A-GFP-ADP) mediated the highest number of GFP-positive cells in the human cultured tumor cell lines. Titers of rAdF35-E1-2A-GFP-ADP were significantly higher (about 4-fold) than those of rAdF35-142T-GFP. rAdF35-E1-2A-GFP-ADP and rAdF35-142T-GFP efficiently detected CTCs in the blood of lung cancer patients at similar levels. GFP+/CD45- cells (CTCs) were found in 10 of 17 patients (58.8%) for both types of recombinant Ads.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Adenoviridae/fisiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Tumorais Cultivadas , Linhagem Celular Tumoral
6.
Mol Ther Methods Clin Dev ; 30: 429-442, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37663646

RESUMO

Uridine diphosphate glucuronosyltransferases (UGTs) are highly expressed in the liver and are involved in the metabolism of many drugs. In particular, UGT1A1 has a genetic polymorphism that causes decreased activity, leading to drug-induced hepatotoxicity. Therefore, an in vitro evaluation system that accurately predicts the kinetics of drugs involving UGT1A1 is required. However, there is no such evaluation system because of the absence of the UGT1A1-selective inhibitor. Here, using human induced pluripotent stem (iPS) cells, genome editing technology, and organoid technology, we generated UGT1A1-knockout human iPS hepatocyte-derived liver organoids (UGT1A1-KO i-HOs) as a model for UGT1A1-specific kinetics and toxicity evaluation. i-HOs showed higher gene expression of many drug-metabolizing enzymes including UGT1A1 than human iPS cell-derived hepatocyte-like cells (iPS-HLCs), suggesting that hepatic organoid technology improves liver functions. Wild-type (WT) i-HOs showed similar levels of UGT1A1 activity to primary human (cryopreserved) hepatocytes, while UGT1A1-KO i-HOs completely lost the activity. Additionally, to evaluate whether this model can be used to predict drug-induced hepatotoxicity, UGT1A1-KO i-HOs were exposed to SN-38, the active metabolite of irinotecan, an anticancer drug, and acetaminophen and confirmed that these cells could predict UGT1A1-mediated toxicity. Thus, we succeeded in generating model cells that enable evaluation of UGT1A1-specific kinetics and toxicity.

7.
Drug Metab Dispos ; 51(12): 1569-1577, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722844

RESUMO

Enzymes catalyzing the reduction reaction of xenobiotics are mainly members of the aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase (SDR) superfamilies. The intestine, together with the liver, is responsible for first-pass effects and is an organ that determines the bioavailability of orally administered drugs. In this study, we evaluated the mRNA and protein expression levels of 12 AKR isoforms (AKR1A1, AKR1B1, AKR1B10, AKR1B15, AKR1C1, AKR1C2, AKR1C3, AKR1C4, AKR1D1, AKR1E2, AKR7A2, and AKR7A3) and 7 SDR isoforms (CBR1, CBR3, CBR4, DCXR, DHRS4, HSD11B1, and HSD17B12) in each region of the human intestine using next-generation sequencing and data-independent acquisition proteomics. At both the mRNA and protein levels, most AKR isoforms were highly expressed in the upper regions of the intestine, namely the duodenum and jejunum, and then declined toward the rectum. Among the members in the SDR superfamily, CBR1 and DHRS4 were highly expressed in the upper regions, whereas the expression levels of the other isoforms were almost uniform in all regions. Significant positive correlations between mRNA and protein levels were observed in AKR1A1, AKR1B1, AKR1B10, AKR1C3, AKR7A2, AKR7A3, CBR1, and CBR3. The mRNA level of AKR1B10 was highest, followed by AKR7A3 and CBR1, each accounting for more than 10% of the sum of all AKR and SDR levels in the small intestine. This expression profile in the human intestine was greatly different from that in the human liver, where AKR1C isoforms are predominantly expressed. SIGNIFICANCE STATEMENT: In this study comprehensively determined the mRNA and protein expression profiles of aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase isoforms involved in xenobiotic metabolism in the human intestine and found that most of them are highly expressed in the upper region, where AKR1B10, AKR7A3, and CBR1 are predominantly expressed. Since the intestine is significantly involved in the metabolism of orally administered drugs, the information provided here is valuable for pharmacokinetic studies in drug development.


Assuntos
Redutases-Desidrogenases de Cadeia Curta , Humanos , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Isoformas de Proteínas/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Intestinos
8.
Inflammation ; 46(6): 2332-2342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615898

RESUMO

Hypoxia inducible factor-1α (HIF-1α) is a crucial therapeutic target in various diseases, including cancer and fibrosis. We previously demonstrated that transfection with double-stranded RNA (dsRNA), including polyI:C and the dsRNA genome of mammalian orthoreovirus, resulted in significant reduction in HIF-1α protein levels in cultured cells; however, it remained to be elucidated how dsRNA induced down-regulation of HIF-1α protein levels. In this study, we examined the mechanism of dsRNA-mediated down-regulation of HIF-1α protein levels. We found that among the various cellular factors involved in dsRNA-mediated innate immunity, knockdown and knockout of protein kinase R (PKR) significantly restored HIF-1α protein levels in dsRNA-transfected cells, indicating that PKR was involved in dsRNA-mediated down-regulation of HIF-1α. Proteasome inhibitors significantly restored the HIF-1α protein levels in dsRNA-transfected cells. Ubiquitination levels of HIF-1α were increased by transfection with dsRNA. These findings indicated that degradation of HIF-1α in a ubiquitin-proteasome pathway was promoted in a PKR-dependent manner following dsRNA transfection. Expression of not only HIF-1α but also several proteins, including CDK4 and HER2, was down-regulated following dsRNA transfection. These data provide important clues for elucidation of the mechanism of dsRNA-mediated cellular toxicity, as well as for therapeutic application of dsRNA.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , RNA de Cadeia Dupla , eIF-2 Quinase , Animais , Humanos , Hipóxia Celular , Regulação para Baixo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , RNA de Cadeia Dupla/metabolismo , Ubiquitinação
9.
Commun Biol ; 6(1): 669, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355744

RESUMO

Non-alcoholic liver disease (NAFLD) is a condition caused by excessive fat accumulation in the liver and developed via multiple pathways. miR-27b has been suggested to play crucial roles in the development of NAFLD, assuming via targeting genes involved in lipid catabolism and anabolism. However, other pathways regulated by miR-27b are largely unknown. Here we show that lipid accumulation was induced in miR-27b-transfected human and mouse hepatic cells and that knockdowns of three miR-27b-target genes, ß-1,4-galactosyltransferase 3 (B4GALT3), matrix AAA peptidase interacting protein 1 (MAIP1) and PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2), induced lipid accumulation. We also show that B4GALT3 and MAIP1 were direct targets of miR-27b and overexpression of MAIP1 ameliorated miR-27b-induced lipid accumulation. In addition, we show that hepatic Maip1 expression declined in mice fed a high-fat diet, suggesting the involvement of decreased Maip1 expression in the condition of fatty liver. Overall, we identified MAIP1/miR-27b axis as a mediator of hepatic lipid accumulation, a potential therapeutic target for NAFLD.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfoproteínas Fosfatases/metabolismo
10.
Anal Chem ; 95(24): 9252-9262, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37293770

RESUMO

To promote the clinical application of human induced pluripotent stem cell (hiPSC)-derived hepatocytes, a method capable of monitoring regenerative processes and assessing differentiation efficiency without harming or modifying these cells is important. Raman microscopy provides a powerful tool for this as it enables label-free identification of intracellular biomolecules in live samples. Here, we used label-free Raman microscopy to assess hiPSC differentiation into hepatocyte lineage based on the intracellular chemical content. We contrasted these data with similar phenotypes from the HepaRG and from commercially available hiPSC-derived hepatocytes (iCell hepatocytes). We detected hepatic cytochromes, lipids, and glycogen in hiPSC-derived hepatocyte-like cells (HLCs) but not biliary-like cells (BLCs), indicating intrinsic differences in biomolecular content between these phenotypes. The data show significant glycogen and lipid accumulation as early as the definitive endoderm transition. Additionally, we explored the use of Raman imaging as a hepatotoxicity assay for the HepaRG and iCell hepatocytes, with data displaying a dose-dependent reduction of glycogen accumulation in response to acetaminophen. These findings show that the nondestructive and high-content nature of Raman imaging provides a promising tool for both quality control of hiPSC-derived hepatocytes and hepatotoxicity screening.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Células-Tronco Pluripotentes Induzidas , Humanos , Hepatócitos , Diferenciação Celular
11.
Mol Pharm ; 20(6): 2876-2890, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37132462

RESUMO

The intestine is an organ responsible for the absorption and metabolism of orally administered drugs. To predict pharmacokinetics behavior in the small intestine, it is necessary to examine the human intestinal expression profiles of the genes related to drug absorption, distribution, metabolism, and excretion (ADME). In this study, to obtain more accurate expression profiles in various regions of the human intestine, biopsy samples were collected from endoscopically noninflamed mucosa of the duodenum, jejunum, ileum, colon, and rectum from Japanese including Crohn's disease or ulcerative colitis patients, and both RNA-seq and quantitative proteomics analyses were performed. We also analyzed the expression of drug-metabolizing enzymes (cytochromes P450 (CYPs) and non-CYP enzymes), drug transporters, and nuclear receptors. Overall, the mRNA expression levels of these ADME-related genes correlated highly with the protein expression levels. The characteristics of the expression of ADME-related genes differed significantly between the small and large intestines, including the expression levels of CYP enzymes, which were higher and lower in the small and large intestines, respectively. Most CYPs were expressed dominantly in the small intestine, especially the jejunum, but were rarely expressed in the large intestine. On the other hand, non-CYP enzymes were expressed in the large intestine but at lower expression levels than in the small intestine. Moreover, the expression levels of drug metabolizing enzyme genes differed even between the proximal and distal small intestine. Transporters were expressed most highly in the ileum. The data in the present study will enhance understanding of the intestinal ADME of drug candidates and would be useful for drug discovery research.


Assuntos
Proteômica , Transcriptoma , Humanos , Transcriptoma/genética , Intestinos , Intestino Delgado/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mucosa Intestinal/metabolismo
12.
PLoS One ; 18(5): e0285783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200286

RESUMO

Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells (HLCs) are expected to replace primary human hepatocytes as a new source of functional hepatocytes in various medical applications. However, the hepatic functions of HLCs are still low and it takes a long time to differentiate them from human iPS cells. Furthermore, HLCs have very low proliferative capacity and are difficult to be passaged due to loss of hepatic functions after reseeding. To overcome these problems, we attempted to develop a technology to dissociate, cryopreserve, and reseed HLCs in this study. By adding epithelial-mesenchymal transition inhibitors and optimizing the cell dissociation time, we have developed a method for passaging HLCs without loss of their functions. After passage, HLCs showed a hepatocyte-like polygonal cell morphology and expressed major hepatocyte marker proteins such as albumin and cytochrome P450 3A4 (CYP3A4). In addition, the HLCs had low-density lipoprotein uptake and glycogen storage capacity. The HLCs also showed higher CYP3A4 activity and increased gene expression levels of major hepatocyte markers after passage compared to before passage. Finally, they maintained their functions even after their cryopreservation and re-culture. By applying this technology, it will be possible to provide ready-to-use availability of cryopreserved HLCs for drug discovery research.


Assuntos
Citocromo P-450 CYP3A , Células-Tronco Pluripotentes Induzidas , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Congelamento , Diferenciação Celular , Hepatócitos/metabolismo
13.
Anticancer Res ; 43(2): 537-546, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36697099

RESUMO

BACKGROUND/AIM: Oncolytic adenoviruses (Ads) (OAds) are gaining attention as an effective remedy for pancreatic cancer. Most OAds are based on human Ad serotype 5 (Ad5) (OAd5); however, two major drawbacks of OAd5 have been reported. Expression of coxsackievirus-adenovirus receptor, a primary infection receptor of Ad5, is often decreased on malignant tumor cells, including pancreatic cancers. More than 60% of adults have neutralizing antibodies against Ad5. Previously, we developed an OAd composed of Ad serotype 35 (Ad35) (OAd35). Ad35 recognizes CD46, which is often up-regulated on pancreatic cancers. In addition, only 20% or fewer adults have anti-Ad35 neutralizing antibodies. MATERIALS AND METHODS: We examined the tumor cell lysis activities of OAd35 in the four human pancreatic cancer cell lines in the presence and absence of human serum. The tumor growth suppression effects of OAd35 after local and systemic administration were evaluated in nude mice bearing human pancreatic tumors. RESULTS: OAd35 showed higher levels of tumor cell lysis activities than OAd5 in the human pancreatic cancer cell lines AsPC-1 and BxPC-3. Although the in vitro tumor cell lysis activities of OAd5 against MIA PaCa-2 and PANC-1 cells were strongly attenuated in the presence of human serum, OAd35 mediated comparable levels of tumor cell lysis in the presence and absence of human serum. Systemic administration of OAd5 did not mediate significant growth inhibition against the subcutaneous BxPC-3 tumor. On the other hand, OAd35 significantly suppressed tumor growth. CONCLUSION: OAd35 would be suitable as an alternative anticancer agent for pancreatic cancer.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Sorogrupo , Camundongos Nus , Adenoviridae/genética , Neoplasias Pancreáticas/terapia , Anticorpos Neutralizantes , Linhagem Celular Tumoral , Vírus Oncolíticos/genética , Vetores Genéticos
14.
Biochem Biophys Rep ; 33: 101416, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36605123

RESUMO

Myeloid-derived suppressor cells (MDSCs), which accumulate in tumor bearers, are known to suppress anti-tumor immunity and thus promote tumor progression. MDSCs are considered a major cause of resistance against immune checkpoint inhibitors in patients with cancer. Therefore, MDSCs are potential targets in cancer immunotherapy. In this study, we modified an in vitro method of MDSC differentiation. Upon stimulating bone marrow (BM) cells with granulocyte-macrophage colony-stimulating factor in vitro, we obtained both lymphocyte antigen 6G positive (Ly-6G+) and negative (Ly-6G-) MDSCs (collectively, hereafter referred to as conventional MDSCs), which were non-immunosuppressive and immunosuppressive, respectively. We then found that MDSCs differentiated from Ly-6G- BM (hereafter called 6G- BM-MDSC) suppressed T-cell proliferation more strongly than conventional MDSCs, whereas the cells differentiated from Ly-6G+ BM (hereafter called 6G+ BM-MDSC) were non-immunosuppressive. In line with this, conventional MDSCs or 6G- BM-MDSC, but not 6G+ BM-MDSC, promoted tumor progression in tumor-bearing mice. Moreover, we identified that activated glutathione metabolism was responsible for the enhanced immunosuppressive ability of 6G- BM-MDSC. Finally, we showed that Ly-6G+ cells in 6G- BM-MDSC, which exhibited weak immunosuppression, expressed higher levels of Cybb mRNA, an immunosuppressive gene of MDSCs, than 6G+ BM-MDSC. Together, these data suggest that the depletion of Ly-6G+ cells from the BM cells leads to differentiation of immunosuppressive Ly-6G+ MDSCs. In summary, we propose a better method for MDSC differentiation in vitro. Moreover, our findings contribute to the understanding of MDSC subpopulations and provide a basis for further research on MDSCs.

15.
Drug Metab Pharmacokinet ; 48: 100482, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36653202

RESUMO

Rodent-derived intestinal tissues or human colon cancer-derived Caco-2 cells are widely used for in vitro pharmacokinetic tests. However, both entail problems such as species differences from humans and low expression levels of specific pharmacokinetic-related factors, respectively. To solve these problems, many groups, including ours, have been focusing on human biopsy-derived intestinal organoids (b-IOs) and human iPS cell-derived intestinal organoids (i-IOs). However, no reports directly compare the two. Therefore, we established both from a single individual and conducted a comparative study. b-IOs had a shorter doubling time than i-IOs: about 59 h vs 148 h. b-IOs also had higher gene expression levels of major drug transporters and drug-metabolizing enzymes than i-IOs. To evaluate their applicability to pharmacokinetics, both organoids were two-dimensionally cultured. Although the b-IO monolayer had a lower transepithelial electrical resistance than the i-IO monolayer, it had higher gene expression levels of many drug transporters and major drug-metabolizing enzymes than the i-IO monolayer. RNA-seq analysis showed that the i-IOs monolayer had a more complex structure than the b-IOs monolayer because the former contained neuronal and vascular endothelial cells. This study provides basic information for pharmacokinetic applications of human biopsy-derived and human iPS cell-derived intestinal organoids.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células CACO-2 , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais , Diferenciação Celular , Biópsia , Organoides , Mucosa Intestinal
16.
Biochem Biophys Rep ; 33: 101432, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36714539

RESUMO

Organoid culture is a technology for creating three-dimensional (3D) tissue-like structures in vitro, and is expected to be used in various fields. It was reported that human adult bile duct cells derived from human biopsy can be expanded as organoids in vitro that exhibit stem cell-like properties including high proliferative ability and differentiation ability toward both hepatocytes and biliary epithelial cells (BECs). Although many studies have achieved the efficient differentiation of bipotent human liver-derived organoids (hLOs) toward mature hepatocytes, the differentiation potency toward mature BECs remains unclear. In this study, we attempted to evaluate the differentiation potency of bipotent hLOs, which were generated from primary (cryopreserved) human hepatocytes (PHHs), toward BECs by sequential treatment with epidermal growth factor (EGF), Interleukin-6 (IL-6), and sodium taurocholate hydrate. Along with the differentiation toward bipotent hLOs-derived BECs (Org-BECs), increases in the gene expression levels of BEC markers and formation of the lumen-like structures typical of BECs were observed. In addition, Org-BECs exhibited P-glycoprotein-mediated drug transport capacity. Finally, in order to expand the applicability of Org-BECs, we succeeded in the differentiation of bipotent hLOs toward BECs in a two-dimensional (2D) culture system. Our findings demonstrated that bipotent hLOs can indeed differentiate into mature BECs, meaning that they possess a capacity for differentiation toward both hepatocytes and BECs.

17.
J Control Release ; 354: 35-44, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586673

RESUMO

PEGylated liposomes (PEG-liposomes) are a promising drug delivery vehicle for tumor targeting because of their efficient tumor disposition profiles via the enhanced permeability and retention (EPR) effect. However, tumor targeting of PEG-liposomes, particularly their delivery inside the tumors, is often disturbed by physical barriers in the tumor, including tumor cells themselves, extracellular matrices, and interstitial pressures. In this study, B16 melanoma tumor-bearing mice were injected intravenously with oncolytic reovirus before administration of PEG-liposomes to enhance PEG-liposomes' tumor disposition. Three days after reovirus administration, significant expression of reovirus sigma 3 protein, elevation of apoptosis-related gene expression, and activation of caspase 3 in the tumors were found. Apoptotic cells were found inside the tumors. These data indicated that reovirus efficiently replicated in the tumors and induced apoptosis of tumor cells. The tumor disposition levels of PEG-liposomes were approximately doubled by reovirus pre-administration, compared with a PBS-pretreated group. PEG-liposomes were widely distributed in the tumors of reovirus-pretreated mice, whereas in the PBS-pretreated group, PEG-liposomes were found mainly around or inside the blood vessels in the tumors. Pre-treatment with reovirus also improved the tumor accumulation of PEG-liposomes in human pancreatic BxPC-3 tumors. 3D imaging analysis of whole BxPC-3 tumors demonstrated that pretreatment with reovirus led to the enhancement of PEG-liposome accumulation inside the tumors. Combination treatment with reovirus and paclitaxel-loaded PEG-liposomes (PTX-PEG-liposomes) significantly suppressed B16 tumor growth. These results provide important information for clinical use of combination therapy of reovirus and nanoparticle-based drug delivery system (DDS).


Assuntos
Lipossomos , Melanoma Experimental , Camundongos , Humanos , Animais , Lipossomos/uso terapêutico , Paclitaxel/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Terapia Combinada , Linhagem Celular Tumoral , Polietilenoglicóis/uso terapêutico
18.
Drug Metab Pharmacokinet ; 48: 100476, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36521426

RESUMO

In the drug development process, it is important to assess the contributions of drug-metabolizing enzymes and/or drug transporters to the intestinal pharmacokinetics of candidate compounds. For such assessments, chemical inhibitors are often used in in vitro systems. However, this practice poses two problems: one is the low expression levels of pharmacokinetic-related genes in conventional in vitro systems, such as Caco-2 cells, and the other is the off-target and less-efficient effects of their inhibitors. Here, as a model, we have established human biopsy-derived enteroids deficient in MDR1, a key efflux transporter. The expression levels and activities of other pharmacokinetic-related genes, such as CYP3A4, in the MDR1-knockout (KO) enteroid-derived monolayers were maintained at levels as high as those in the WT enteroid-derived monolayers. The contribution of MDR1 to the cytotoxicity of vinblastine, which CYP3A4 metabolized, was accurately evaluated by using the MDR1-KO enteroid-derived monolayers. In contrast, it could not be evaluated in the WT enteroid-derived monolayers treated by verapamil, a widely used MDR1 inhibitor, due to the off-target effect of verapamil, which also inhibits CYP3A4. The combination of human enteroid-derived monolayers and genome editing technology would be a powerful tool to evaluate the contributions of specific pharmacokinetic-related molecules.


Assuntos
Citocromo P-450 CYP3A , Verapamil , Humanos , Transporte Biológico , Células CACO-2 , Citocromo P-450 CYP3A/metabolismo
19.
Sci Rep ; 12(1): 21560, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513733

RESUMO

Oncolytic adenoviruses (OAds), most of which are based on species C human adenovirus serotype 5 (Ad5) (OAd5), have recently received much attention as potential anticancer agents. High seroprevalence of anti-Ad5 neutralizing antibodies is a major hurdle for Ad5-based gene therapy. However, the impacts of anti-Ad5 neutralizing antibodies on OAd5-mediated transgene expression in the tumor and antitumor effects remain to be fully elucidated. In this study, we examined the impact of anti-Ad5 neutralizing antibodies on the OAd5-mediated antitumor effects and OAd5-mediated transgene expression. The luciferase expression of OAd-tAIB-Luc, which contains the cytomegalovirus promoter-driven luciferase gene, was inhibited in human cultured cells in the presence of human serum. Although the inhibitory effects of human serum possessing the low anti-Ad5 neutralizing antibody titers were overcome by long-term infection, the in vitro tumor cell lysis activities of OAd-tAIB-Luc were entirely attenuated by human serum containing the high titers of anti-Ad5 neutralizing antibodies. OAd-tAIB-Luc-mediated luciferase expression in the subcutaneous tumors 3 days after administration and tumor growth suppression levels following intratumoral administration were significantly lower in mice possessing the high titers of anti-Ad5 neutralizing antibodies, compared to those in control mice. These results suggested that pre-existing anti-Ad5 antibodies attenuated both transgene expression and potential antitumor effects of OAd5 following intratumoral administration.


Assuntos
Infecções por Adenoviridae , Adenovírus Humanos , Neoplasias , Humanos , Camundongos , Animais , Adenoviridae/genética , Vetores Genéticos/genética , Estudos Soroepidemiológicos , Infecções por Adenoviridae/genética , Transgenes , Adenovírus Humanos/genética , Anticorpos Antivirais , Luciferases/genética , Neoplasias/terapia , Neoplasias/genética , Anticorpos Neutralizantes/genética
20.
J Pharmacol Sci ; 150(3): 135-145, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36184118

RESUMO

Histamine is a major neurotransmitter and alleviates neuronal damage after ischemic injury via H2 receptors. Herein, we investigated the effects of H2 receptor agonists on the blood-brain barrier (BBB) disruption after traumatic brain injury (TBI). Male ddY mice were used to generate the TBI model, in which a fluid percussion injury (FPI) was induced by a hydraulic impact. The BBB disruption was evaluated using Evans blue extravasation. H2 receptor agonists, amthamine and dimaprit, were administered into the lateral cerebroventricle (i.c.v.) or tail vein (i.v.) from 3 hours to 3 days after FPI. The i.c.v. or i.v. administration of amthamine and dimaprit reduced FPI-induced Evans blue extravasation and promoted mRNA expression of vascular protective factors, including angiopoietin-1 and sonic hedgehog. The co-administration of ranitidine, a H2 receptor antagonist, inhibited these effects. Expression of the H2 receptor was observed in astrocytes and brain microvascular endothelial cells (BMECs) in the injured cortex. Treatment with amthamine and dimaprit promoted mRNA expression of vascular protective factors in astrocytes and BMECs. These results suggest that H2 receptor agonists alleviate TBI-induced BBB disruption by increasing the expression of vascular protective factors in astrocytes and BMECs.


Assuntos
Lesões Encefálicas Traumáticas , Agonistas dos Receptores Histamínicos , Angiopoietina-1/metabolismo , Angiopoietina-1/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Dimaprit/metabolismo , Dimaprit/farmacologia , Células Endoteliais/metabolismo , Azul Evans/metabolismo , Azul Evans/farmacologia , Proteínas Hedgehog , Histamina/farmacologia , Agonistas dos Receptores Histamínicos/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Masculino , Camundongos , Fatores de Proteção , RNA Mensageiro/metabolismo , Ranitidina/metabolismo , Ranitidina/farmacologia , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...